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a b s t r a c t

The equations of motion of an ellipsoid on a smooth horizontal plane are similar to the equations of motion
of a heavy rigid body with a fixed point. In general, one integral is also lacking in order to integrate them.
For a triaxial ellipsoid, the centre of mass of which coincides with the geometrical centre, it is proved
that an additional integral is lacking (in the generic case).

© 2009 Elsevier Ltd. All rights reserved.

1. Formulation of the problem

The equations of motion and their first integrals. Consider the motion of a heavy rigid body, having the shape of a triaxial ellipsoid,
on a smooth horizontal plane. One holonomic constraint is imposed on the system, namely, the height of the centre of mass above the
plane is uniquely defined by the orientation of the body, i.e., the system has five degrees of freedom. Suppose OXYZ is a fixed system of
coordinates, S is the centre of mass of the body, Se1, Se2 and Se3 are the principal central axes of inertia of the body, v = (�x, �y, �z) is the
velocity vector of the centre of mass of the body, � = (�1, �2, �3) is the angular velocity vector of the body, � = (�1, �2, �3) is the unit vector
of the ascending vertical, directed along OZ, m is the mass of the body, (b1, b2, b3) are the principal semiaxes of the ellipsoid, J = daig(J1, J2,
J3) is the principal central inertia tensor of the body, r(�) is the radius vector of the centre of mass of the body at the point where it touches
the plane, N is the normal reaction of the plane and z = −〈r(�), �〉 is the elevation of the centre of mass of the body above the plane.

The law of motion of the centre of mass has the form

In the projection onto the OX and OY axes we obtain �̇x = �̇y = 0, i.e., we can always choose an inertial system of coordinates with centre
at the centre of the body, moving uniformly along a horizontal plane and in which vx = vy = 0. In the projection onto the OZ axis we have

Hence, expressing the value of N and substituting the result into the law of variation of the principal angular momentum about S and
taking into account the condition for the vertical unit vector to be constant, we obtain the Euler–Poisson equations

(1.1)

(here and henceforth we assume that z = z(�)).
Equations (1.1) for any parameters have three first integrals (the energy integral, the area integral and the geometrical integral):

The limitation of system (1.1) to the common level of integrals
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is a Lagrange system with two degrees of freedom. For it to be integrable, according to Liouville’s theorem, a single additional integral is
lacking.

The purpose of this paper is to determine the necessary conditions for an additional integral to exist.

2. A triaxial ellipsoid

Suppose the principal central axes of inertia are codirectional with the principal axes of the body surface, while the centre of mass
coincides with the geometrical centre. Then

Suppose M = (M1, M2, M3) is the angular momentum; then the equations of motion (1.1) can be written in the form of the Hamilton
system

(2.1)

where

We will consider Eqs (2.1) in the complex domain. We will seek an additional integral F in the class of meromorphic functions.
To prove the complex integrability the following considerations are necessary.
Suppose we have a system of differential equations with right-hand side holomorphic and analytical in � (� is a small parameter)

(2.2)

We will assume that it admits of k ≤ n − 1 integrals, represented in the form

(2.3)

Suppose I are plane integrals of the unperturbed system, corresponding to the zero value of � in expansion (2.2).
The following theorem, which, in the idealogical plan, goes back to the work of Kovalevskaya and Lyapunov, is well known.
Theorem 1 (Refs 1, 2, Ref. 2, p. 245, Appendix (4.11)).
1o. Suppose the function f(0)(x) is quasi-homogeneous, i.e., the unperturbed system is invariant under the tranformations t → �t,

xj → �pjxj, and it has a non-zero solution

2o. The integrals F(0)(x) are functionally independent quasi-homogeneous polynomials in this solution (i.e., the rank of the Jacobi matrix
for the functions F(0)(x) is a maximum in the solution).

3o. The functions f(i)(x),(i = 1,2,. . .) are polynomails.
Then, the following assertions hold:

1) the Kovalevskaya matrix

and its eigenvalues �i, called Kovalevskaya exponents, are integer;
Suppose �i are eigenvectors of the Kovalevskaya matrix.

2) the solution of system (2.2) has the form
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where

(2.4)

and sij(t) are the sums of monomials in t, and � is a parameter, which corresponds to the term of least order in �, where a logarithmic
correction is required (if relation (2.4) does not contain logarithms, in general we assume that � = ∞).

3) the following k conditions are satisfied

(2.5)

Remarks. Assertion 1) is Yoshida’s theorem1 which follows from conditions 1o and 2o. Assertion 2) is derived by the method of variation
of arbitrary constants, taking into account the scale-invariance of the equations and conditions 3o. Assertion 3) is obtained by substituting
expansion (2.4) into integrals (2.3) and expanding them in series in powers of �. Where algorithms are first encountered there will be
branching of the solution, which contradicts the uniqueness of the first integrals. It follows form condition 2o that the Jacobian of the
replacement F = F(I) exists and is non-degenerate (det(∂F/∂I) /= 0) in the solution, and hence we can consider relations for I instead of F.
Hence, the required assertion follows.

The results of applying Theorem 1 to the problem considered can be formulated in the form of the following theorem.
Theorem 2 (this problem is formulated in Ref. 3). Suppose all the J1, J2 and J3 are different and the ellipsoid is close to a sphere:

bi = R + �Bi, (i = 1,2,3). Then the equations of motion (2.1) allow of a particular solution of the form (2.4), containing a term with logarithms,
if the following condition is not satisfied

and these equations do not allow of an additional integral, functionally independent with the remaining integrals in this solution, that is
analytic in � and algebraic in the phase variables.

The proof of the theorem is similar to that considered previously (Ref. 4, p. 73 – 81).
By introducing the small parameter in this form, we can use Theorem 1 for n = 6 and k = 4.
In the first approximation we obtain the equations

(2.6)

These equations are identical with the Kirchhoff–Clebsch equations for the motion of a body in an ideal fluid, for which their integrals
have the form

We make the replacement

Note that in this case the following equalities hold

In the new variables (we henceforth omit the bar over mi) Eqs (2.6) can be written in the form

(2.7)

Equations (2.7) when � = 0 have four integrals:

(2.8)

where 2H0 = A1m2
1�−2

1 + A2m2
2�−2

2 + A3m2
3�−2

3 is a linear combination of the integrals I1 and I2.
Clearly all four integrals are independent.
Unperturbed system (2.7) has the exact the solution



M.Yu. Ivochkin / Journal of Applied Mathematics and Mechanics 73 (2009) 616–620 619

We will obtain a solution of the form (2.4) for Eqs (2.7). To do this, according to the theorem, we obtain the eigenvectors and eigenvalues
of the Kovalevskaya matrix. The general solution of Eqs (2.7) has the form

Here the coefficients ci are found by the method of variation of arbitrary constants.
We will write the first three components of the vector x(1)(t)

The Kovalevskaya exponents for them are R = {−1,2,2}.
The solution in the first approximation for the inhomogeneous case can be found by the method of variation of arbitrary constants and

has the form

where

(2.9)

and c0
1, c0

2, c0
3 are arbitrary constant.

In this case the first three components of the vector s11, which occurs in expansion (2.4), specifying the exact solution, have the form

By virtue of the necessary condition of integrability (2.5), it is necessary to take the scalar product of the vectors s11 and (1, −1, 0, 0, 0, 0),
(0, 1, −1, 0, 0, 0).

Hence, condition (2.5) is equivalent to equating to zero the coefficients of the logarithms

(2.10)

System (2.10) can be rewritten in the form

and then in the form of the single Clebsch condition

We will now consider the second approximation of Eqs (2.1)

(2.11)

Here we have introduced the notation: P – a certain matrix, which depends on �, and q a certain vector which depends on �,

The theorem is again applicable, since the logarithm can now occur in the second approximation. The coefficients of the terms, quadratic
in m, of Eqs (2.11) are not important, since they will be proportional to t−2 and hence the solutions in (2.9) will have no logarithmic part.
Carrying out a discussion similar to the case of the first approximation, we obtain the conditions for the integral to exist

(2.12)

From Eqs (2.10) and (2.12) we have the equations

They give two relations connecting the parameters B1, B2 and B3. Simplifying them, taking into account the equality �2
1 + �2

2 + �2
3 = −1,

it can be shown that they are equivalent to the condition B1 = B2 = B3.
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